Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cell Metab ; 36(4): 745-761.e5, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38569471

ABSTRACT

There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Metabolic Syndrome , Obesity, Metabolically Benign , Adult , Humans , Obesity/metabolism , Triglycerides , Metabolic Syndrome/metabolism , Body Mass Index , Risk Factors
2.
Nutr Metab (Lond) ; 20(1): 44, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858106

ABSTRACT

BACKGROUND: The gut microbiome is a salient contributor to the development of obesity, and diet is the greatest modifier of the gut microbiome, which highlights the need to better understand how specific diets alter the gut microbiota to impact metabolic disease. Increased dietary fiber intake shifts the gut microbiome and improves energy and glucose homeostasis. Dietary fibers are found in various plant-based flours which vary in fiber composition. However, the comparative efficacy of specific plant-based flours to improve energy homeostasis and the mechanism by which this occurs is not well characterized. METHODS: In experiment 1, obese rats were fed a high fat diet (HFD) supplemented with four different plant-based flours for 12 weeks. Barley flour (BF), oat bran (OB), wheat bran (WB), and Hi-maize amylose (HMA) were incorporated into the HFD at 5% or 10% total fiber content and were compared to a HFD control. For experiment 2, lean, chow-fed rats were switched to HFD supplemented with 10% WB or BF to determine the preventative efficacy of flour supplementation. RESULTS: In experiment 1, 10% BF and 10% WB reduced body weight and adiposity gain and increased cecal butyrate. Gut microbiota analysis of WB and BF treated rats revealed increases in relative abundance of SCFA-producing bacteria. 10% WB and BF were also efficacious in preventing HFD-induced obesity; 10% WB and BF decreased body weight and adiposity, improved glucose tolerance, and reduced inflammatory markers and lipogenic enzyme expression in liver and adipose tissue. These effects were accompanied by alterations in the gut microbiota including increased relative abundance of Lactobacillus and LachnospiraceaeUCG001, along with increased portal taurodeoxycholic acid (TDCA) in 10% WB and BF rats compared to HFD rats. CONCLUSIONS: Therapeutic and preventative supplementation with 10%, but not 5%, WB or BF improves metabolic homeostasis, which is possibly due to gut microbiome-induced alterations. Specifically, these effects are proposed to be due to increased concentrations of intestinal butyrate and circulating TDCA.

3.
Biogerontology ; 23(6): 741-755, 2022 12.
Article in English | MEDLINE | ID: mdl-36315375

ABSTRACT

Chronic calorie restriction (CR) results in lengthened lifespan and reduced disease risk. Many previous studies have implemented 30-40% calorie restriction to investigate these benefits. The goal of our study was to investigate the effects of calorie restriction, beginning at 4 months of age, on metabolic and physical changes induced by aging. Male C57BL/6NCrl calorie restricted and ad libitum fed control mice were obtained from the National Institute on Aging (NIA) and studied at 10, 18, 26, and 28 months of age to better understand the metabolic changes that occur in response to CR in middle age and advanced age. Food intake was measured in ad libitum fed controls to assess the true degree of CR (15%) in these mice. We found that 15% CR decreased body mass and liver triglyceride content, improved oral glucose clearance, and increased all limb grip strength in 10- and 18-month-old mice. Glucose clearance in ad libitum fed 26- and 28-month-old mice is enhanced relative to younger mice but was not further improved by CR. CR decreased basal insulin concentrations in all age groups and improved insulin sensitivity and rotarod time to fall in 28-month-old mice. The results of our study demonstrate that even a modest reduction (15%) in caloric intake may improve metabolic and physical health. Thus, moderate calorie restriction may be a dietary intervention to promote healthy aging with improved likelihood for adherence in human populations.


Subject(s)
Aging , Caloric Restriction , Mice , Animals , Male , Humans , Mice, Inbred C57BL , Aging/physiology , Energy Intake , Glucose
4.
Am J Physiol Endocrinol Metab ; 323(4): E389-E401, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36002172

ABSTRACT

Although the physiological role of glucagon receptor signaling in the liver is well defined, the impact of glucagon receptor (Gcgr) signaling on white adipose tissue (WAT) continues to be debated. Although numerous studies propose that glucagon stimulates WAT lipolysis, we lack evidence that physiological concentrations of glucagon regulate WAT lipolysis. In turn, we performed studies in both wild-type and WAT Gcgr knockout mice to determine if glucagon regulates lipolysis at WAT in the mouse. We assessed the effects of fasting and acute exogenous glucagon administration in wild-type C57BL/6J and GcgrAdipocyte+/+ versus GcgrAdipocyte-/- mice. Using an ex vivo lipolysis protocol, we further examined the direct effects of glucagon on physiologically (fasted) and pharmacologically stimulated lipolysis. We found that adipocyte Gcgr expression did not affect fasting-induced lipolysis or hepatic lipid accumulation in lean or diet-induced obese (DIO) mice. Acute glucagon administration did not affect serum nonesterified fatty acids (NEFA), leptin, or adiponectin concentration, but did increase serum glucose and FGF21, regardless of genotype. Glucagon did not affect ex vivo lipolysis in explants from either GcgrAdipocyte+/+ or GcgrAdipocyte-/- mice. Gcgr expression did not affect fasting-induced or isoproterenol-stimulated lipolysis from WAT explants. Moreover, glucagon receptor signaling at WAT did not affect body weight or glucose homeostasis in lean or DIO mice. Our studies have established that physiological levels of glucagon do not regulate WAT lipolysis, either directly or indirectly. Given that glucagon receptor agonism can improve dyslipidemia and decrease hepatic lipid accumulation, it is critical to understand the tissue-specific effects of glucagon receptor action. Unlike the crucial role of hepatic glucagon receptor signaling in maintaining glucose and lipid homeostasis, we observed no metabolic consequence of WAT glucagon receptor deletion.NEW & NOTEWORTHY It has been postulated that glucagon stimulates lipolysis and fatty acid release from white adipose tissue. We observed no metabolic effects of eliminating or activating glucagon receptor signaling at white adipose tissue.


Subject(s)
Glucagon , Receptors, Glucagon , Adiponectin/metabolism , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Animals , Fatty Acids, Nonesterified/metabolism , Glucagon/metabolism , Glucose/metabolism , Isoproterenol , Leptin/metabolism , Lipolysis , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism
5.
J Endocrinol ; 243(2): 149-160, 2019 11.
Article in English | MEDLINE | ID: mdl-31454790

ABSTRACT

Hyperglucagonemia, a hallmark in obesity and insulin resistance promotes hepatic glucose output, exacerbating hyperglycemia and thus predisposing to the development type 2 diabetes. As such, glucagon signaling is a key target for new therapeutics to manage insulin resistance. We evaluated glucagon homeostasis in lean and obese mice and people. In lean mice, fasting for 24 h caused a rise in glucagon. In contrast, a decrease in serum glucagon compared to baseline was observed in diet-induced obese mice between 8 and 24 h of fasting. Fasting decreased serum insulin in both lean and obese mice. Accordingly, the glucagon:insulin ratio was unaffected by fasting in obese mice but increased in lean mice. Re-feeding (2 h) restored hyperglucagonemia in obese mice. Pancreatic perfusion studies confirm that fasting (16 h) decreases pancreatic glucagon secretion in obese mice. Consistent with our findings in the mouse, a mixed meal increased serum glucagon and insulin concentrations in obese humans, both of which decreased with time after a meal. Consequently, fasting and re-feeding less robustly affected glucagon:insulin ratios in obese compared to lean participants. The glucoregulatory disturbance in obesity may be driven by inappropriate regulation of glucagon by fasting and a static glucagon:insulin ratio.


Subject(s)
Fasting/blood , Glucagon/blood , Insulin Resistance , Insulin/blood , Obesity/blood , Adult , Animals , Blood Glucose/metabolism , Body Mass Index , Diabetes Mellitus, Type 2/blood , Female , Humans , Hyperglycemia/blood , Male , Mice, Inbred C57BL , Middle Aged , Obesity/physiopathology , Pancreas/drug effects , Pancreas/metabolism
6.
Mol Metab ; 22: 37-48, 2019 04.
Article in English | MEDLINE | ID: mdl-30772257

ABSTRACT

OBJECTIVE: Administration of glucagon (GCG) or GCG-containing co-agonists reduces body weight and increases energy expenditure. These actions appear to be transduced by multiple direct and indirect GCG receptor (GCGR)-dependent mechanisms. Although the canonical GCGR is expressed in brown adipose tissue (BAT) the importance of BAT GCGR activity for the physiological control of body weight, or the response to GCG agonism, has not been defined. METHODS: We studied the mechanisms linking GCG action to acute increases in oxygen consumption using wildtype (WT), Ucp1-/- and Fgf21-/- mice. The importance of basal GCGR expression within the Myf5+ domain for control of body weight, adiposity, glucose and lipid metabolism, food intake, and energy expenditure was examined in GcgrBAT-/- mice housed at room temperature or 4 °C, fed a regular chow diet (RCD) or after a prolonged exposure to high fat diet (HFD). RESULTS: Acute GCG administration induced lipolysis and increased the expression of thermogenic genes in BAT cells, whereas knockdown of Gcgr reduced expression of genes related to thermogenesis. GCG increased energy expenditure (measured by oxygen consumption) both in vivo in WT mice and ex vivo in BAT and liver explants. GCG also increased acute energy expenditure in Ucp1-/- mice, but these actions were partially blunted in Ffg21-/- mice. However, acute GCG administration also robustly increased oxygen consumption in GcgrBAT-/- mice. Moreover, body weight, glycemia, lipid metabolism, body temperature, food intake, activity, energy expenditure and adipose tissue gene expression profiles were normal in GcgrBAT-/- mice, either on RCD or HFD, whether studied at room temperature, or chronically housed at 4 °C. CONCLUSIONS: Exogenous GCG increases oxygen consumption in mice, also evident both in liver and BAT explants ex vivo, through UCP1-independent, FGF21-dependent pathways. Nevertheless, GCGR signaling within BAT is not physiologically essential for control of body weight, whole body energy expenditure, glucose homeostasis, or the adaptive metabolic response to cold or prolonged exposure to an energy dense diet.


Subject(s)
Adipose Tissue, Brown/metabolism , Energy Metabolism , Homeostasis , Receptors, Glucagon/metabolism , Animals , Cold Temperature , Male , Mice , Mice, Knockout
8.
Oecologia ; 183(4): 1197-1210, 2017 04.
Article in English | MEDLINE | ID: mdl-28224350

ABSTRACT

The frequency of extreme warm years is increasing across the majority of the planet. Shifts in plant phenology in response to extreme years can influence plant survival, productivity, and synchrony with pollinators/herbivores. Despite extensive work on plant phenological responses to climate change, little is known about responses to extreme warm years, particularly at the intraspecific level. Here we investigate 43 populations of white ash trees (Fraxinus americana) from throughout the species range that were all grown in a common garden. We compared the timing of leaf emergence during the warmest year in U.S. history (2012) with relatively non-extreme years. We show that (a) leaf emergence among white ash populations was accelerated by 21 days on average during the extreme warm year of 2012 relative to non-extreme years; (b) rank order for the timing of leaf emergence was maintained among populations across extreme and non-extreme years, with southern populations emerging earlier than northern populations; (c) greater amounts of warming units accumulated prior to leaf emergence during the extreme warm year relative to non-extreme years, and this constrained the potential for even earlier leaf emergence by an average of 9 days among populations; and (d) the extreme warm year reduced the reliability of a relevant phenological model for white ash by producing a consistent bias toward earlier predicted leaf emergence relative to observations. These results demonstrate a critical need to better understand how extreme warm years will impact tree phenology, particularly at the intraspecific level.


Subject(s)
Climate Change , Trees , Plant Leaves , Reproducibility of Results , Seasons , Temperature
9.
Integr Comp Biol ; 56(5): 950-961, 2016 11.
Article in English | MEDLINE | ID: mdl-27375272

ABSTRACT

Venom and its associated delivery systems have evolved in numerous animal groups ranging from jellyfishes to spiders, lizards, shrews, and the male platypus. Building off new data and previously published anatomical and molecular studies, we explore the evolution of and variation within venomous fishes. We show the results of the first multi-locus, ordinal-level phylogenetic analysis of cartilaginous (Chondrichthyes) and ray-finned (Actinopterygii) fishes that hypothesizes 18 independent evolutions of this specialization. Ancestral-states reconstruction indicates that among the 2386-2962 extant venomous fishes, envenomed structures have evolved four times in cartilaginous fishes, once in eels (Anguilliformes), once in catfishes (Siluriformes), and 12 times in spiny-rayed fishes (Acanthomorpha). From our anatomical studies and phylogenetic reconstruction, we show that dorsal spines are the most common envenomed structures (∼95% of venomous fish species and 15 independent evolutions). In addition to envenomed spines, fishes have also evolved venomous fangs (2% of venomous fish species, two independent evolutions), cleithral spines (2% of venomous fish species, one independent evolution), and opercular or subopercular spines (1% of venomous fish species, three independent evolutions).


Subject(s)
Fishes/classification , Fishes/genetics , Phylogeny , Venoms/genetics , Animals , Biological Evolution
10.
Cell Metab ; 23(5): 770-84, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27166942

ABSTRACT

Metabolism research has made tremendous progress over the last several decades in establishing the adipocyte as a central rheostat in the regulation of systemic nutrient and energy homeostasis. Operating at multiple levels of control, the adipocyte communicates with organ systems to adjust gene expression, glucoregulatory hormone exocytosis, enzymatic reactions, and nutrient flux to equilibrate the metabolic demands of a positive or negative energy balance. The identification of these mechanisms has great potential to identify novel targets for the treatment of diabetes and related metabolic disorders. Herein, we review the central role of the adipocyte in the maintenance of metabolic homeostasis, highlighting three critical mediators: adiponectin, leptin, and fatty acids.


Subject(s)
Adiponectin/metabolism , Adipose Tissue/metabolism , Fatty Acids/metabolism , Homeostasis , Leptin/metabolism , Animals , Energy Metabolism
11.
Sci Rep ; 6: 24751, 2016 04 25.
Article in English | MEDLINE | ID: mdl-27109385

ABSTRACT

Biofluorescence has recently been found to be widespread in marine fishes, including sharks. Catsharks, such as the Swell Shark (Cephaloscyllium ventriosum) from the eastern Pacific and the Chain Catshark (Scyliorhinus retifer) from the western Atlantic, are known to exhibit bright green fluorescence. We examined the spectral sensitivity and visual characteristics of these reclusive sharks, while also considering the fluorescent properties of their skin. Spectral absorbance of the photoreceptor cells in these sharks revealed the presence of a single visual pigment in each species. Cephaloscyllium ventriosum exhibited a maximum absorbance of 484 ± 3 nm and an absorbance range at half maximum (λ1/2max) of 440-540 nm, whereas for S. retifer maximum absorbance was 488 ± 3 nm with the same absorbance range. Using the photoreceptor properties derived here, a "shark eye" camera was designed and developed that yielded contrast information on areas where fluorescence is anatomically distributed on the shark, as seen from other sharks' eyes of these two species. Phylogenetic investigations indicate that biofluorescence has evolved at least three times in cartilaginous fishes. The repeated evolution of biofluorescence in elasmobranchs, coupled with a visual adaptation to detect it; and evidence that biofluorescence creates greater luminosity contrast with the surrounding background, highlights the potential importance of biofluorescence in elasmobranch behavior and biology.


Subject(s)
Elasmobranchii/physiology , Fluorescence , Photoreceptor Cells/physiology , Pigments, Biological/metabolism , Sharks/physiology , Adaptation, Ocular , Animals , Behavior , Biological Evolution , Phylogeny , Pigments, Biological/chemistry , Skin Physiological Phenomena , Vision, Ocular
12.
Transgend Health ; 1(1): 165-171, 2016.
Article in English | MEDLINE | ID: mdl-29159307

ABSTRACT

Background: Male-to-female transsexual women or transwomen who undergo cross-sex hormone treatments experience increased health-related risks (e.g., increased rates of cardiovascular disease and premature death). Yet, the exact mechanism by which altering biochemistry leads to metabolic impairment remains unclear. While much attention has been paid to cross-sex hormone therapy, little is known about the metabolic risk associated with orchiectomy. Methods: To address the above limitation, we prospectively enrolled 12 transwomen: 4 who had undergone bi-lateral orchiectomy and 8 who had not. Both groups were using cross-sex hormones. Glucose tolerance was assessed using a standard 75g oral glucose tolerance test. Hepatic steatosis was assessed by 1H magnetic resonance spectroscopy. The amount of subcutaneous and visceral abdominal fat was determined from a single abdominal axial image at the level between the vertebral L2 and L3 bodies. Baseline venous fasting blood sampling was performed for measurement of hemoglobin A1c, glucose, insulin, sex hormones, and sex hormone binding globulin. Results: The major novel findings were: (1) orchiectomy and cross-sex hormone therapy is associated with less hepatic steatosis and insulin resistance; (2) orchiectomy may be metabolically protective, and (3) circulating concentrations of sex hormones may be a major determinant of metabolic health in transwomen. Conclusions: To our knowledge, this is the first study to suggest an independent and protective role of orchiectomy on the metabolic health of transwomen.

13.
J Cell Biol ; 208(5): 501-12, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25733711

ABSTRACT

Adipose tissue is a complex, multicellular organ that profoundly influences the function of nearly all other organ systems through its diverse metabolite and adipokine secretome. Adipocytes are the primary cell type of adipose tissue and play a key role in maintaining energy homeostasis. The efficiency with which adipose tissue responds to whole-body energetic demands reflects the ability of adipocytes to adapt to an altered nutrient environment, and has profound systemic implications. Deciphering adipocyte cell biology is an important component of understanding how the aberrant physiology of expanding adipose tissue contributes to the metabolic dysregulation associated with obesity.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Energy Metabolism , Obesity/metabolism , Adipocytes/pathology , Adipose Tissue/pathology , Animals , Humans , Obesity/pathology
15.
ISRN Nutr ; 2014: 562075, 2014.
Article in English | MEDLINE | ID: mdl-24967271

ABSTRACT

There is increasing evidence that Shc proteins play a role in energy metabolism, and we have previously reported that knockdown of Shc proteins influences the energetic response to acute (3 days) calorie restriction (CR) in 18-month-old mice. Whether Shc proteins play a role in the metabolic response to CR in younger mice has yet to be elucidated. Hence, we sought to determine the impact of 3 days and longer term (2 months) CR on energy expenditure (EE) and respiratory quotient (RQ) in 3 month-old Shc knockout (ShcKO) and wild-type (WT) mice. ShcKO mice decreased (P < 0.001) EE normalized for body weight (EEBW) by 3 days of CR, while no such change was observed in WT animals. However, both ShcKO and WT mice decreased (P < 0.001) EEBW at 2 months of CR and there were no differences in body weight between the ShcKO and WT mice at either 3 days or 2 months of CR. Consistent with increased fatty acid oxidation, only ShcKO mice maintained decreased (P < 0.001) 24 h RQ through 2 months of CR, suggesting that they were able to maintain increased fatty acid oxidation for a longer period of time than WT mice. These results indicate that Shc proteins may contribute to some of the acute energetic responses to CR.

16.
Obesity (Silver Spring) ; 22(5): E55-61, 2014 May.
Article in English | MEDLINE | ID: mdl-24347344

ABSTRACT

OBJECTIVE: Short sleep duration induces hormonal perturbations contributing to hyperphagia, insulin resistance, and obesity. The majority of these studies are conducted in young adults. This analysis in a large (n = 769) sample of postmenopausal women (median age 63 years) sought to (a) confirm that sleep duration and sleep quality are negatively correlated with circulating leptin concentrations and (b) to examine the relationship between self-reported sleep, dietary energy intake, and diet quality, as well as, investigate the role of leptin in these associations. METHODS: Sleep duration/quality, insomnia, and dietary intake were determined via self-report. Blood samples were collected following an overnight fast to assess serum leptin concentration. All analyses were adjusted for total body fat mass. RESULTS: Women reporting ≤6 hr sleep/night had lower serum leptin concentrations than those reporting ≥8 hr sleep (P = 0.04). Furthermore, those with ≤6 hr sleep/night reported higher dietary energy intake (P = 0.01) and lower diet quality (P = 0.04) than the reference group (7 hr sleep/night). Women sleeping ≥8 hr also reported lower diet quality than the reference group (P = 0.02). Importantly, serum leptin did not confound these associations. CONCLUSIONS: These results provide evidence that sleep duration is inversely associated with serum leptin and dietary energy intake in postmenopausal women.


Subject(s)
Diet , Energy Intake , Leptin/blood , Postmenopause , Sleep/physiology , Aged , Body Composition , Body Mass Index , Body Weight , Cross-Sectional Studies , Female , Humans , Life Style , Linear Models , Middle Aged , Motor Activity , Surveys and Questionnaires
17.
PLoS One ; 7(11): e48790, 2012.
Article in English | MEDLINE | ID: mdl-23144971

ABSTRACT

While it has been proposed that Shc family of adaptor proteins may influence aging by regulating insulin signaling and energy metabolism, the overall impact of Shc proteins on whole body energy metabolism has yet to be elucidated. Thus, the purpose of this study was to determine the influence of Shc proteins and aging on whole body energy metabolism in a mouse model under ambient conditions (22°C) and acute cold exposure (12°C for 24 hours). Using indirect respiration calorimetry, we investigated the impact of Shc proteins and aging on EE and substrate utilization (RQ) in p66 Shc-/- (ShcKO) and wild-type (WT) mice. Calorimetry measurements were completed in 3, 15, and 27 mo mice at 22°C and 12°C. At both temperatures and when analyzed across all age groups, ShcKO mice demonstrated lower 24 h total EE values than that of WT mice when EE data was expressed as either kJ per mouse, or adjusted by body weight or crude organ mass (ORGAN) (P≤0.01 for all). The ShcKO mice also had higher (P<0.05) fed state RQ values than WT animals at 22°C, consistent with an increase in glucose utilization. However, Shc proteins did not influence age-related changes in energy expenditure or RQ. Age had a significant impact on EE at 22°C, regardless of how EE data was expressed (P<0.05), demonstrating a pattern of increase in EE from age 3 to 15 mo, followed by a decrease in EE at 27 mo. These results indicate a decline in whole body EE with advanced age in mice, independent of changes in body weight (BW) or fat free mass (FFM). The results of this study indicate that both Shc proteins and aging should be considered as factors that influence energy expenditure in mice.


Subject(s)
Aging/metabolism , Energy Metabolism , Shc Signaling Adaptor Proteins/physiology , Animals , Calorimetry , Cold Temperature , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Shc Signaling Adaptor Proteins/genetics , Temperature
18.
Mech Ageing Dev ; 133(6): 414-20, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22588161

ABSTRACT

It has been proposed that Shc proteins may influence aging by regulating insulin signaling and energy metabolism. Evidence suggests that deletion of p66Shc could partially attenuate weight gain on a high fat diet by increasing energy expenditure. However, the impact of p66Shc on the metabolic response to calorie restriction (CR) has not been determined. Thus, we used indirect respiration calorimetry to determine the impact of CR on energy expenditure (EE) and substrate utilization (RQ) in 18mo p66Shc(-/-) and wild-type (WT) mice. Calorimetry measurements were completed at baseline and following 3d of 40% CR and 2 mo of 26% CR. There was no difference (P>0.10) in EE and RQ between gentoypes, regardless of how EE data was normalized. Both p66Shc(-/-) and WT mice showed decreases (P<0.001) in EE normalized for body weight at 2 mo of CR. However, the response to 3d of CR was different between genotypes with only the p66Shc(-/-) showing a decrease (P<0.001) in 24 h EE expressed per mouse or normalized for body weight. The results indicate that p66Shc does not significantly influence EE in 18 mo mice at baseline or 2 mo of CR, although it may play a role in the EE response to very acute CR.


Subject(s)
Caloric Restriction , Energy Metabolism/physiology , Shc Signaling Adaptor Proteins/metabolism , Animals , Body Weight/physiology , Calorimetry, Indirect , Mice , Mice, Inbred C57BL , Shc Signaling Adaptor Proteins/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...